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SECOND ORDER CORRECTIONS OF THE SEQUENTIAL 
BOOTSTRAP 

GUTTI JOGESH BABU, P. K. PATHAK, AND C. R. RAO 

ABSTRACT. Rao, Pathak and Koltchinskii (1997) have recently studied a sequential 
approach to resampling in which resampling is carried out sequentially one-by-one 
(with replacement each time) until the bootstrap sample contains m « (1 -e_1)n « 
.632n distinct observations from the original sample. They have established that 
the main empirical characteristics of the sequential bootstrap go through, in the 
sense of being within a distance of order 0(n~3/'4) from those of the usual boot- 
strap. However, the theoretical justification of the second order correctness of the 
sequential bootstrap is somewhat involved. It is the main topic of this investigation. 
Among other things, we accomplish it by approximating our sequential scheme by a 
resampling scheme based on the Poisson distribution with mean \i — 1 and censored 
at X = 0. 

1. INTRODUCTION 

Efron (1979) introduced the bootstrap method of resampling as a ubiquitous sam- 

pling technique of estimating the variance of an estimator and a sampling distribution 

of a given statistic. In a fundamental paper, Bhattacharya and Ghosh (1978) have 

demonstrated that Edgeworth expansions for a wide class of statistics can be derived 

from Edgeworth expansions for multivariate sample means. This technique has been 

used by Singh (1981) to show, in the case of univariate sample mean, that the boot- 

strap is more accurate than the central limit theorem when higher order population 

moments exist. These ideas are further exploited by Babu and Singh (1983, 1984) 

to show the superiority of the bootstrap method and by Babu and Singh (1985) to 

obtain Edgeworth expansions for the ratio statistic and similar statistics based on 

Date: December 15, 1997. 
1991 Mathematics Subject Classification. 62G09, 62E20, 60F05. 
Key words and phrases. Asymptotic expansions, Edgeworth expansions, bootstrap, expansions 

for conditional distributions,  lattice distribution. 
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and NSF grant DMS-9626189. Research work of C. R. Rao was supported by the Army Research 
Office under Grant DAAH04-96-1-0082. 
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2 GUTTI JOGESH BABU, P. K. PATHAK, AND C. R. RAO 

samples from finite populations. The method is also used by Babu and Singh (1989) 

to obtain global Edgeworth expansions for functions of means of random vectors, 

when one of the coordinates has a lattice distribution and the remaining part of the 

vector has a strongly non-lattice distribution. Later Gene and Zinn (1990) showed 

that in a certain weak sense, the bootstrap method is valid (consistent) if and only if 

the central limit theorem holds. In fact the central limit theorem furnishes accuracy 

of approximation of order o(l), while if the third population moment exists, one can 

expect, in many commonly encountered populations the accuracy of the bootstrap 

method to be of order o(n-1/2), where n denotes the sample size. Thus while the 

bootstrap method has the potential of being second-order accurate; the central limit 

approximation is not so. This is one of the several reasons for the current interest 

and preference in the literature for those methods of resampling that are second-order 

accurate, i.e., accurate of the order o(n-1'2). 

Stemming from Efron's observation that the information content of a bootstrap 

sample is based on approximately (1 - e-1)100% « 63% of the original sample, Rao, 

Pathak and Koltchinskii (1997) have introduced a sequential resampling method in 

which sampling is carried out one-by-one (with replacement) until (m + 1) distinct 

original observations appear, where m denotes the largest integer not exceeding (1 — 

e_1)n. The last observation is discarded to ensure simplicity in technical details. It 

has been shown that the empirical characteristics of this sequential bootstrap are 

within a distance of order 0(n~3^4) from the usual bootstrap. The authors provide 

a heuristic argument in favor of their sampling scheme and establish the consistency 

of the sequential bootstrap; however the question of second-order correctness was not 

addressed. 

One of the main advantages of the sequential bootstrap over the classical fixed 

sample size bootstrap is its performance in estimating the variance of an estimator, 

when the original data contains several identical values. This situation occurs when 

the sample is drawn from a population with a distribution that is not continuous. To 

be more specific, suppose X\,... ,Xn are i.i.d random variables satisfying P{X\ = 

0) = .3.  Then with positive probability, about 30% of the data X, are equal to 0. 
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With positive probability, several bootstrap resamples end up in n zeros, leading to a 

zero estimate of variance. On the other hand the sequential bootstrap, by sampling 

until m distinct labels X, are selected, guarantees a resample that contains elements 

other than 0. Hence the sequential bootstrap scheme has an edge over the classical 

bootstrap, especially when dealing with categorical data. 

The main object of this paper is to examine the second order correctness of the 

sequential bootstrap. The theoretical justification of this is somewhat more difficult 

because of the dependence among the bootstrap sample units. At this time a rigorous 

Edgeworth expansion under this kind of dependence is unavailable in the literature. 

A cumbersome approach based on computation of cumulants, under the (unsubstan- 

tiated) assumption that a formal Edgeworth expansion is valid, may be given along 

the lines of the Hall-Mammen (1994) paper. This does not lead to a complete solu- 

tion as the Edgeworth expansions are not known. Instead we first approximate the 

sequential bootstrap by another sequential resampling scheme based on the Poisson 

distribution. Under the new scheme the "independence" of sample units under re- 

sampling is preserved. A rigorous justification of the Edgeworth expansion can now 

be given more easily. This then provides a sound theoretical framework in which 

the second order correctness for the sequential bootstrap can be established. In this 

paper we concentrate on sample means of fc-variate random vectors. The Edgeworth 

expansions for smooth functions of multivariate sample means follow from similar 

expansions for multivariate means as in Bhattacharya and Ghosh (1978). 

2. SEQUENTIAL RESAMPLING SCHEMES 

Let S = (Xi,X2,... ,Xn) be a random sample from a distribution F, and 6(F) 

a parameter of interest. Let Fn denote the empirical distribution function based 

on S, and suppose that 9(Fn) is to be used as an estimator of 6{F). The Efron's 

bootstrap method approximates the sampling distribution of a standardized ver- 

sion of y/n(6(Fn) - 9(F)) by the resampling distribution of a corresponding statistic 

y/n(6(F„) - 0(Fn)) based on a bootstrap sample Sn in which the original F has been 

replaced by the empirical distribution based on the original sample S, and Fn of the 
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former statistic has been replaced by the empirical distribution based on a bootstrap 

sample Fn. In Efron's bootstrap resampling scheme, Sn = (Xi,X2,... ,Xn) is a ran- 

dom sample of size n drawn from S by simple random sampling with replacement 

(SRSWR). In the Rao-Pathak-Koltchinskii (1997) sequential scheme, observations 

are drawn from S sequentially by SRSWR until there are (m + 1) = [n(l - e-1)] + 2 

distinct original observations in the bootstrap sample; the last observation is dis- 

carded to ensure technical simplicity. Thus an observed bootstrap sample under the 

Rao-Pathak-Koltchinskii scheme admits the form: 

SN = (X1,X2,...,XN) (2.1) 

in which XUX2,... ,XN have m « n(l - e-1) distinct observations from S. The 

random sample size N admits the following decomposition in terms of the independent 

random variables: 

N = I1 + I2 + ... + Im (2.2) 

in which m = [n(l - e-1)] + 1; h = 1, and for each k,2<k<m, 

Although we have established the consistency of this sampling scheme, a rigorous 

proof of its second order correctness requires an Edgeworth expansion for dependent 

random variables; such an expansion is unavailable in the literature at the present 

time. An alternative approach that can be used is to slightly modify the preceding 

resampling scheme so that existing techniques on Edgeworth expansion, such as those 

of Babu and Bai (1996), Bai and Rao (1992), Babu and Singh (1989) and others, can 

be employed. A modification of our previous resampling scheme that allows the 

second-order correctness to go through easily is as follows: 

Poisson Resampling Scheme: 

For the selection of a bootstrap sample with a given number m of distinct units, 

under the Poisson Resampling Scheme (PRS), we provide a conceptual definition and 

a practical approach. Let us take a sample «i,... , an of n independent observations 
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from P(l), i.e., Poisson distribution with mean 1. If there are exactly m values in 

the sample, we accept it and take 

5 = {(X1,a1),(X3,a2),... ,(X„,an)}, (2.4) 

i.e., with the observation X, repeated a; times, as the bootstrap sample. If the 

number of nonzero values in au ... , ctn is not exactly m, we reject the entire sample 

and draw another sample of size n. The bootstrap sample size N of S as in (2.1) is 

a random variable 

N = a1 + ... + an. (2.5) 

A practical way of implementing this resampling scheme is to first assign at random 

(n - m) a's a value of zero and to the remaining m a's values independently chosen 

from the Poisson distribution with mean \i = 1 and censored at X = 0. An outline 

of the equivalence of these two procedures is as follows. 

Theorem 2.1. The moment generating function Mjv(i) of N, the sample size of the 

Poisson resampling scheme, is given by 
■(e(e'-l)_e-l)- 

MN(t) = (2.6) 
(1 - e-1 

Proof. Let Yi,Y2,... ,Yn be n Poisson variables with mean p = 1. Then it is easily 

seen that 

P(N = w) = const (Ex — J (2.7) 
V     ctva2\... am\ J 

where the sum Si extends over all positive natural numbers a\, a2,... , am such that 

«i + a2 + ... + ocm = w. It then follows that (see Pathak (1961)) 

P(N = w) = const  e~^{mw - ("£) (m! - l)w + ... ± 1") 

= const^(AmXu'U=o) (2-8) 

where A is the difference operator with unit increment. 

From (2.8) it follows that 
1 Xw 
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Consequently the moment generating function MN(t) of N is given by 

w>0 v ' 

= I VA' 
(e-1) 

u>0 

XJXY 
\x=o 

= A \x=o 

-FU^-O^G) ,(m-2)e< ...} 

'm1 m 

-TT^^-iir+u»«-—> 
(i - e-

ev 
(e-l) 

(eet - 1) 

L(e-l) 
(e(e'-D _ e-i) 

(1-e-1) 

This completes the proof. 

(2.10) 

(2.11) 

D 

The preceding theorem shows that the distribution of N can be viewed as that of 

the sum of m IID random variables with a common distribution with the moment 

generating function given by the formula 

m{t) = 
(e(c'-D - e-1) 

(2.12) 
(1 - C-i) 

It is evident that m(t) is the moment generating function of the Poisson distribution 

with n = 1 and censored at X = 0. Let Y denote a random variable with moment 

generating function m(t). Then E(Y) = 1/(1 - e"1) and V(Y) = e(e - 2)/(e - l)2. 

Therefore 

E(N) = mE(Y) 

= n + 0(l) (2.13) 
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and 

V(N) = mV(Y) 

= n(e-2)/(e-l) + 0(l) (2.14) 

With these results, we now proceed to establish the second order correctness of the 

sequential bootstrap based on the Poisson distribution. 

3. SECOND ORDER CORRECTION 

Let {ai,n, • • • ,an,n} be a sequence of column vectors in Rk. In the application we 

typically use 

at> = (Xi - X)    with X = I Er=1 Xi. (3.1) 

Note that k denotes the dimension of Xt.   Let {Yj : j > 1} be a sequence of non- 

negative i.i.d. random variables with a lattice distribution of span 1. Let 

l* = E{Yi),    a2 = V(Yl)>0, 

73 = E(Y1-fxf<r-3,    p=P(y1>0),    9=1 -p. 

Further assume that the support of Yi has at least two non-zero values. Note that 

73 = 1 if Yi has a Poisson distribution with mean \x = 1. Let 

*-£!>*-*.• (3-2) 

ci,n = V-lajin (3.3) 

*»(*) = r E((c;>^)3 - 3(ci,nl)2«nx)), (3.4) 
6n 4-, 

.7=1 

where 1 denotes the column vector in Rk with all the entries equal to 1, and for any 

vector t G Rk, let 

dn(t)=1-J2ei^. (3.5) 
n ■ i 

Define for any measurable function h on R , 

M, = sup|Mx)|(l + ||x||)-3, (3.6) 
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and for any 8 > 0, x G R , 

w(h,8;x) =    sup   \h(x) - h(z)\, 
\\x-z\\<8 

w(h,8) = /   w(h,8;x)(fik(x)dx, (3.7) 
JRk 

where </>fc denotes the density of the fc-variate standard normal distribution. 

Further define 

N = Y,Yi>*=N/n (3.8) 

Un = -^Y,YiV-lai,n (3.9) 
V        j=l 

rn = £/{y,>0}, (3.10) 

and 

¥„(*) =  f 1 + -^feP»^)) &(*). (3.11) 

Let F°(-|m) denote the conditional distribution of 

^E^- = w^ (3-12) 

given (Tn = m). We now state the main theorem. 

Theorem 3.1. Let £"=1 ajtn = 0, £(>?) < oo and for some M > 0 

f>j)n||
3 <Mn. (3.13) 

j=i 

Suppose for any 0 < K < L < oo, there exists 07 = j(K, L) < 1 suc/i ffeai 

limsup    sup     |dn(£)| < 7- (3-14) 
n-+oo      K<||<||<i 

Ifm—np is bounded and ifh is a real valued measurable function on R   with Mh < 00, 

then 

Ih(x){F°(dx\m) - Vn(x)dx) 

R" 

= o(Mhn-1'2) + 0(w(h,8n)), (3.15) 

for some 8n = o(n-1/2). 
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Proof of Theorem 3.1 is differed to the Appendix. 

In order to apply Theorem 3.1 to the sequential resampling procedures, let Xi, X2,... 

be IID random vectors in Rk with mean vector r\ and dispersion S. Let H be a three 

times continuously differentiable function in a neighborhood of rj and let l(x) denote 

the vector of first order partial derivatives (gradient) of H. Suppose that the distrib- 

ution of Xx is strongly non-lattice, and E\\Xxf < oo. Let l{rj) ^ 0, 02 = /'(^S/^) a 

nd e2
n = /'(X)S„Z(X), where Sn is the sample dispersion. By taking ai>n = {Xi - X), 

we can apply Theorem 3.1 to arrive at 

Corollary 3.1. If 73 = 1, \i = cr, E(Yf) < 00 and if m - np is bounded, then 

sup^|P(^(tf f^£ W) - H(X)) < a6n\Tn = m, Xu... ,Xn) 

-P(yfi{H(X) - H(ri)) <a9)^0 (3.16) 

as n -> 00, for almost all sample sequences {Xj}. 

Corollary 3.2. Suppose the function H on Rk is three times continuously differen- 

tiable in a neighborhood of the origin and H(0) = 0. If 73 = 1, E(Yf) < 00, and 

m — np is bounded. Then 

supx/^lF^i/f-^r^X.-X)^) <aV!'(0)Sn/(0)|Tn = m, Xly... ,Xn) 

-P{y/^H{X -rj)< av//'(0)S/(0))| -». 0 (3.17) 

as n —^ 00, for almost all sample sequences {Xj}. 

Corollary 3.2 does not assume any relation between \i and a, so it is applicable 

for a wide range of distributions for Yi. In particular if Yi is negative binomial 

with parameters r > 5, and P{Yx = 0) = (2 - (r/2) + {l/2)y/r(r - 4))r, then 

73 = 1, p = -r + 2r(4 - r + \/r2 - Ar)'1 and <r2 = r/{r - 4). 

Proof of Corollary 3.2 is omitted as it is similar to the proof of Corollary 3.1. 
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Proof of Corollary 3.1. By expanding in Taylor series, we have 

= fKVJ(X) + -^KVnLnVnUn + 0((logn)3n-1) (3.18). 

on \Un\ < logn and \Y - n\ < f. 

Since the distribution of X\ is strongly non-lattice, and £||Xi||3 is assumed to be 

finite, conditions (3.13) and (3.14) hold for almost all sample sequences {Xi}. By 

Theorem 3.1 and by Lemma 3 of Babu and Singh (1984), we have 

=  f (1 + -Us*(*))&(*) dx + o(n-^2) (3.19) 
y-oo      v» 

uniformly in y for almost all sample sequences, where q0 is a polynomial. Similarly 

from the proofs of Theorems 20.8 and 24.2 of Bhattacharya and Ranga Rao (1986), 

P(y/Z(H(X) - H(fi)) < aO) =  f (1 + -J=(fo(s))&(s) dx + o{n-1'2)        (3.20) 

uniformly in a. The result now follows from (3.19) and (3.20) as 73 = 1. 

The most commonly used statistics, especially the studentized versions, are of the 

type 

tn = MH(X) - fffo))/"^ |>(*)), (3-21) 

where A is a function on Rk -» Rr and v is a smooth real-valued function on K. 

The classical Student's t is an example of this type of statistic. If X, are univariate, 

then 
MX - v) 

satisfies (3.21) with H(x) = x, X(x) = (x2,x), v{x,y) = max(0, (x - y2))1'2 and 

s2
n = - YZ^iiXi-X)2- Tne version corresponding to (3.21) under the Poisson scheme 

is generally of the type, 

tn(Y) = v^(ff(^E**) -ff(*))/"(^£ M*)*)- (3.22) 
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Corollary 3.3. Suppose Yi is as in Corollary 3.1. Let 

K£(ApG))) = Vmmü), (3.23) 

v{X) = y/l'{X)Xnl{X), (3.24) 

and let L{X{) be a linearly independent sub collection of (X,-, A(X,)) with the property 

that all the coordinates of (Xi, A(X,)) can be expressed as linear combinations of those 

of L(Xi). If the distribution of L{X{) is strongly non-lattice, £||L(Xi)||3 < oo, and 

if m — np is bounded then 

supv^|P(*n(y) < a\Tn = ro, Xu... , Xn) - P(tn < a)\ -^ 0, (3.25) 
a 

as n —>■ oo, for almost all sample sequences {Xj}. 

Remark 1. If yx is a Poisson random variable with mean 1, then fj, = a = 73 = 1. If 

m = [n(l - e-1)] + 1, then 0 < m - np < 1. So Corollaries 3.1 and 3.3 are applicable 

for the basic Poisson scheme described in Section 2. 

4. APPENDIX 

To establish Theorem 3.1, we need some preliminary results. Let 

F„(x, r, m) = P(Un <x, N = r,Tn = m), (4.1) 

where v < x mean, the inequalities hold coordinate wise. Let 

Z = (Yi - n, I{Yl>0} - p)', 

and 

*„(x, y) = (1 + -^=Q»(a:, v))M*)My), (4-2) 

where </?o denotes the density of the bivariate normal distribution with zero mean 

vector and dispersion 

So = ("2       M) ■ (4-3) 
\M?     pq/ 
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Suppose 

Qn(x,y) = 73Pn(x) + ^^'Sö1y^ 

- \{E{{Z'^1y){Yl - tfpq + a\q - />)/{n>0}))/detE0) 

+ 5<H,-*)*((n^)W»). (*■*) 
Since the support of Yi is assumed to include at least two non-zero values, it follows 

that So is positive definite. 

Proposition 4.1.  Under the conditions of Theorem 3.1, 

I h(x)(nFn(dx, r, m) - tf n(x, yr, um)dx) 

= (o{Mhn-1/2) + 0(u>(h,8n)))<po{yn,u;m) 

+0(M,n"1/2)i J2 \\«A3E(y*I{YlM>Jn}), (4-5) 

uniformly in 

yr = {r- nfi)n-1/2, um = (m - np)n~l/2, (4.6) 

for some 8n = o(n-1'2). 

Remark 2. Under the conditions of Theorem 3.1, 

sup Knll = (Kn1/3), (4.7) 
l<j<n 

so  sup IK.nlln"1/2 -> 0 as n -» oo. Consequently 
l<j<n 

SUp E(Y?I{Yl\\ajin\\>y/n}) 
l<j<n 

=  sup ||aj,n||3n-3/2E(yi
6/{yi||a,,n||>^) 

l<j<n 

= oin-1'2). 

Hence the last term in (4.5) can be replaced by o{Mhn~l). 

The proof of Proposition 4.1 is similar to that of Theorem 1 of Babu and Bai 

(1996). It uses truncation arguments in the proof of Theorem 20.8 of Bhattacharya 

and Ranga Rao (1986). The Proposition follows from Lemmas 4.1, 4.2 and 4.3 that 
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are stated below, and Lemma 4 of Babu and Bai (1996). Lemmas 4.1, 4.2 and 4.3 

are modified versions of the first three lemmas of Babu and Bai (1996). The measure 

J in Babu and Bai (1996) is assumed to satisfy / \\x\\k+14dJ{x) < oo. 

Before stating the lemmas, we introduce some notation. For non-singular integral 

vector a' = (au ... ,as) and z' = (zu ... , z.) € R", we write 

|a| = a!+ ... + *„ za = z?1...^ and D^Df1...£>?', 

where Dj denotes the partial derivative with respect to the j-th coordinate. 

Lemma 4.1. Let g be a real valued function on R   x Z3 satisfying 

J2 J(l + \\x\\y+k+1\g(x,rn)\dx<<x>, 

m€Z3 ok 
rw it 

for some non-negative s. Then there exists a constant c(k) depending only on k such 

that, for all m G Z3, 

J(l + \\x\\°)\g(x,m)\dx 

Rk 

G      R* 

where G = [—TT,TT]
3
 and g denotes the Fourier transform of g. 

Proof of Lemma 4.1 is similar to that of Lemma 1 of Babu and Bai (1996) and 

hence omitted. 

Lemma 4.2. Let Y° and e° have the same distributions as that of Y and e respec- 

tively. Suppose (Y,e) and (Y°,e°) are independent.  Then 

- Y, |£(e,ra'-y+,Vff)|2 < E\dn(t(Y - Y°))\ (4.8) 
ni=i 

Proof of Lemma 2. The left side of (4.8) is same as 

-y£(e't,a-(y-yVv(£-£0>) 
n r-' 

=E{dn(t(Y - r°))e,v<£-£0)) 

<E\dn(t(Y-Y°))\. 
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Lemma 4.3. Let E(Yl) < Mi and the smallest eigenvalue o/So is bounded below by 

ox > 0. Suppose (3.13) holds. Then for \\t\\ < n_1/2logn and Mn"1/2 log n < \\u\\ < 

w, we have for any C C {1,... , n}, 

jec 

< kyexp(b — fc2(logn)2) 

where b denotes the number of integers in C and fci,^ > 0 are positive constants 

depending only on M, Mi, b and C\. 

Proof of Lemma 3. Since 

le-^-i,PE{eiUY1+iui{Yl>0}) _ 1 + l(Witl)So(w>IJy| < I||(w,u)||3Ml, 

there exists a 0 < 8 < TT/8 and Ai > 0 depending only on v\ and M\ such that 

whenever |u;| < AS and \u\ < AS.   Suppose \\t\\ < n"1/'2logn, and Mn-1/2 log n < 

HHI < 8. Then for some A > 0 

JJE(e.rai,„y1+,vz) < JJ(1 _ A((i'aiin)2 + |H2) 

< g-Anllt'^ll^-nAHHI2 

< e-AM(logn)2_ (4.9) 

Further observe that 

\E(eiwYl+iuIM>°>)\ = Iq + pe^Eie^^Yt > 0)| 

<q + p\E(ei^\Y1>0)\ 

<l-7o<l, 

for some 70 > 0, whenever ~ < \u\ < w + 8. Hence 

|£;(e«*,»i.-yi+«v*)|<l-7o, 

whenever ||i|| < n_1/2logn and 8 < \\v\\ < IT. This completes the proof of Lemma 

4.3. 
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n 

Proof of Theorem 3.1. Let Hn denote the indicator function of (2|^ J2 Y* -H > A*)- 

Suppose m - np is bounded. By Markov inequality, E(Hn) = 0(n~3). Hence 

E{Hn\Tn = m) = E(Hn)/P{Tn = m) 

= 0(n-3)(P(Tn = m))-1 

= 0(n~5/2). 

Clearly 

E{YxHnN-l\Tn = m) = -V^y^n^"'!^ = m) 
»=i 

= -E(Hn\Tn = m) 
n 

= 0(n"7/2). 

Consequently, there exists a constant M2 > 0, such that 
n 

M2E(/l(v/^^5ZcJ>^'/(iV<7))lrn = m"> 
3=1 

n 

< E(Hn\Tn = m) + nz'2E{\\ £ c^-AT^nflT» = m) 
i=l 

n 
= 0(n"7/2) + n3/2£(£ Hc^ll^iV-^nir,, = m) 

3=1 

= 0(n"7/2) + 0(n3'2E(Hn\Tn = m))\ 

= 0(n"1). (4.10) 

By (3.12), (4.1) and (4.6), we have 
oo 

F°(x|m) = Y,F»(*(l + (Vi/PV^)), yj,u3m)/P(Tn = m), 
3=1 

and by Proposition 4.1, 

V" ,      ■ r- 
J:2|J/J|</»N/ä 

x (nF„((fe,y,-,wm) - Vn(x,yj,um)dx\ 

= (o(Mhn-1f2) + 0(u3{h,8n)))-^=    E    Vo(yi,u;m) + o(M,n-1/2) 

= o(M/ln-1/2) + 0K/l,5n)). (4.11) 
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By Theorem 13 on local Edgeworth expansions on pages 205-206 of Petrov (1975), 

we have 

(4.12) 

The Theorem now follows from (4.11) and (4.12), as in the proof of Theorem 6 of 

Babu and Bai (1996). 
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